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Abstract  I. Introduction 

Reducible plane groups are classified into pairs of  
fr ieze-group classes; reducible space groups are 
classified into pairs of  layer and rod classes with 
respect to all possible Z decomposi t ions .  Firstly, all 
reduct ions of  t ranslat ion groups to the form of  a direct 
sum ( Z  decomposi t ion)  or of  a subdirect  sum ( Z  
reduct ion)  of  two G- invar ian t  t ranslat ion groups of  
lower d imensions  are de termined according to 
Bravais types. A practical  way to determine layer and 
rod classes with the use of  s tandard  space-group 
diagrams is described and a geometr ic  interpretat ion 
of  symmorph ic  representat ives of  these classes is 
explained.  Tables of  the distr ibution of  plane groups 
into pairs of  frieze classes and of  space groups into 
layer and  rod classes with respect to possible Z 
decomposi t ions  are given. A notat ion for layer and 
rod groups compat ible  with H e r m a n n - M a u g u i n  sym- 
bols for space groups is used; compatibi l i ty  is 
achieved on the basis of  the factorizat ion procedure.  

* On leave of absence from Institute of Physics, Czechoslovak 
Academy of Sciences, Na Slovance 2, PO Box 24, 18040 Praha 8, 
Czechoslovakia. 

This is the first part  of  a two-paper  series [paper  II: 
Fuksa  & Kopsk2~ (1993)] in which we apply  the results 
of  d imens ion- independen t  analysis of  the factoriz- 
ation of  reducible space groups by their partial  trans- 
lation subgroups  (Kopsk3~, 1989a, b) to plane groups 
and to space groups in three dimensions.  We start 
with a br ief  review of  the factorizat ion procedure  to 
make  the reader  famil iar  with symbols and terms used 
in the papers  by Kopsk2~ (1989a, b), which will be 
referred to as papers  A and B. According to the 
definition of  a reducible space group,  the plane 
groups of  oblique and rec tangular  systems and all 
space groups,  with the exception of  cubic ones, are 
reducible. The t ranslat ion subgroup  TG of  a reducible 
space group G contains 'par t ial  t ranslat ion subgroups '  
that  are maximal  in the sense that  they are equivalent  
to intersections of  Tc with the rational (or real) space 
they themselves generate  and invariant  under  the 
point  group G and hence normal  in G. 

According  to the ' factor izat ion theorem'  (paper  A, 
theorem 2), the factor  groups of  reducible space 
groups over partial  t ransla t ion subgroups  have the 
structure of  subper iodic  groups.  The whole Tc is 

0108-7673/93/020269-12506.00 © 1993 International Union of Crystallography 



270 LAYER AND ROD CLASSES OF REDUCIBLE SPACE GROUPS. I 

either a direct sum (Z decomposition) of complemen- 
tary partial translation subgroups or it contains their 
direct sum as its proper subgroup of finite index (Z 
reduction). In both cases, we can assign the space 
group G to a pair of complementary classes of sub- 
periodic groups with respect to a given Z decomposi- 
tion or Z reduction. 

Classification of reducible plane groups into pairs 
of frieze-group classes has already been considered 
by Litvin & Kopsk2~ (1987) and it is discussed here 
only for completeness. Reducible space groups are 
accordingly classified into pairs, consisting of a layer 
and of a rod class. We shall determine here all types 
of Z decompositions and of Z reductions for plane 
and space groups and perform classification for Z 
decompositions. Factorization for Z reductions has 
special features and will be considered in the next 
paper. 

An actual factorization and hence the distribution 
of space groups into layer and rod classes is per- 
formed on the basis of space-group diagrams from 
International Tables for Crystallography (1987), refer- 
red to as IT87. It has been known for a long time 
(Cochran, 1952; Kathleen Lonsdale, personal com- 
munication) that for each layer group there exists a 
space group with the same diagram. We shall explain 
the group-theoretical nature of this relationship and 
show that an analogous relationship can be found 
for rod groups. The factorization procedure itself will 
be used to deduce the Hermann-Mauguin  symbols 
for layer and rod groups, which are compatible with 
the notation for the space groups. 

2. A brief review of the factorization procedure 

A reducible space group G = {(3, Ta, P, uc(g)} has 
the following property: the vector space V(n, R) 
splits, perhaps in several or even infinitely many ways, 
into G-invariant crystallographic subspaces Vm(k, R) 
and V2(h, R), of which V(n, R) is a direct sum. The 
word 'crystallographic'  means that the intersections 
Tam = T a n  Vl(k, R) and Ta2 = Tan V2(h, R) are 
partial translation subgroups that span the spaces 
Vl(k, R) and V2(h, R), respectively. The reduction 
V(n, R) = Vl(k, R)O) V2(h, R) is the reduction in the 
field of real numbers or, in earlier nomenclature, an 
R reduction. If it is crystallographic, then it implies 
a Q reduction, the former name for the reduction of 
the rational space V(Tc,  Q), spanned by Ta, into a 
direct sum of G-invariant rational subspaces Vm(Ta, 
Q) and V2(Ta2, Q). With each such R reduction 
we associate two homomorphisms: 0.m: V(n, R ) ~  
V~(k, R) and 02: V(n, R ) ~  V2(h, R), which can be 
interpreted as projections of vectors t from the space 
V(n, R) onto their components 0"1(t)= tl = V~(k, R) 
and 0"2(0 = t 2 e  V2(h, R) so that t = t ~ + t 2 .  

The group Ta is then either a direct sum Ta~0) T62 
of partial G-invariant translation subgroups Tal = 

o'l(Ta) and To2 = 0.2(T a),  which is a Z decomposi- 
tion of the group Ta or it is expressed as 

T~ = Tcl~) Ta2[Owd2w .. .  wdp], 

which is the so-called Z reduction of Ta. In the latter 
case, the projections of the group Tc into the G- 
invariant subspaces are groups 

0.1(Ta) = TOm : T6m[Owd21w .. .  wdpl] 

and 

0 .2(Tc) -  T°2 = Ta2[Ovd22v .. .  vdp2], 

of which Tc is a subdirect sum and the factor groups 
Ta/(TalGTa2), T°m/Tam and T°2/Tc2 are iso- 
morphic (Kopsk3), 1988a). 

Since they are G-invariant subgroups of 7"6, the 
partial translation groups T~m and To2 are normal 
subgroups of G and, according to the factorization 
theorem (paper A, theorem 2), the factor groups 
G/Tal and (~/TG2 a r e  isomorphic to subperiodic 
groups. The effect of various homomorphisms, con- 
nected with projection homomorphisms o-m and 0-2 
has been analyzed (see paper A). The factor groups 
may be represented by so-called 'contracted sub- 
periodic groups',  which act on the Cartesian prod- 
ucts El(k) x V2(h, R) and Vl(k, R) x E2(h) of the 
Euclidean spaces El(k), E2(h), with their difference 
spaces, which are the subspaces Vm(k, R) and 
V2(h, R); in both cases we combine the points 
of Euclidean space with vectors of complementary 
vector space. 

The homomorphisms introduced by relations given 
in paper A, equation (10) then map the group G onto 
groups [L=trm(G)=[G, T°m, Pro, ucm(g)]=G/Tc2 
and R = 0"2(G) = (G, T°2,  P2, ua2(g)) = G/Tam, where 
ua l (g )=0 .1 [ua (g ) ] ,  ua2(g)=o '2 [ua(g) ]  are projec- 
tions of the system of nonprimitive translations ua (g)  
onto G-invariant subspaces Vm(k, R), V2(h, R) and 
Pi, P2 are the points of spaces El(k), E2(h) chosen 
as origins, corresponding to the origin P of E(n). 
Accordingly, we say that the space group G belongs 
to the pair of subperiodic classes IL and R with respect 
to the reduction V(n, R) = Vl(k, R)G V2(h, R). 

3. Z decomposability and Z reducibility as properties 
of Bravais types 

It is not necessary to consider the reduction scheme 
separately for each geometric class G. Indeed, each 
discrete translation group T has a particular holo- 
hedral symmetry Go and the pair (Go, T) determines 
a particular Bravais arithmetic (Z)  class; in other 
words, the Bravais type of T. Each arithmetic class 
(G, T) then belongs to a particular arithmetic Bravais 
class (B/ilow, Neub/iser & Wondratschek, 1971; 
Schwarzenberger, 1974). The assignment of arith- 
metic classes ((3, T) to Bravais arithmetic classes 
(Go, T) is such that, if there is no accidental 
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degeneracy of the symmetry of T, the decomposition 
scheme is the same for G as for Go. The R and Q 
reductions are the properties of crystal families, while 
Z decompositions and reductions are the properties 
of Bravais flocks. The terminology used here follows 
that of Brown, Biilow, Neubiiser, Wondratschek & 
Zassenhaus (1978) and the contribution by Wondrat- 
schek to IT87. Hence our first task is to determine 
possible Z decompositions or Z reductions for reduc- 
ible Bravais arithmetic classes or, equivalently, for 
Bravais types of translation groups. 

3.1. The plane groups 

The oblique and rectangular systems are reducible. 
The first system admits an infinite set of inclined 
reductions; the second admits a unique orthogonal 
reduction, which results either in Z decomposition 
(primitive Bravais type p) or in Z reduction (centered 
Bravais type c). 

The case of the oblique system illustrates the main 
problem of inclined reductions. Every basis {a, b} of 
the oblique translation group implies Z decomposi- 
tion T(a, b) = T(a ) •  T(b). If we consider a Q reduc- 
tion of V(T, Q), in which the G-invariant one- 
dimensional subspaces of the space V(T, Q) intersect 
with T(a, b) in the groups T(a'),  T(b') such that 
{a', b'} is not a basis of T(a, b), we get, however, Z 
reduction of T(a, b) to the form of a subdirect sum 
T(a')0) T ( b ' ) [ 0 w d  2U . . . u d p ] .  Nevertheless, to 
each T(a') we can always find complementary T(b') 
such that {a', b'} will be just another basis of T(a, b). 
Furthermore, there exists R reductions of V(T, R) 
that do not imply Q reductions. These are the cases 
when subspaces V1(R), V2(R) do not define 'crys- 
tallographic directions'. However, we can always find 
a translation group T for which a given R reduction 
implies Z decomposition. It is sufficient to take one 
vector of the basis of T in V~(k, R), the other in 
V2(h, R). We do not list such cases in the tables. 

There are two Bravais types in the rectangular 
system. The primitive type leads to Z decomposition 
Tp = T ( a , b ) =  T ( a ) O  T(b), the centered type to Z 
reduction To= T(a,b)[Ou(a+b)/2]= T ( a ) O  T(b) 
[ 0 u  ( a + b ) / 2 ]  with G-invariant subgroups Tel = 
T(a), TG2 = T(b) and G-invariant projections TOG1 = 
T(a/2) ,  T°2 = T(b/2)  of  the group TG. These simple 
results are collected in Table 1. 

3.2. The space groups 

All Z decompositions and Z reductions of the 
t ranslat ion groups of the 11 reducible Bravais types 
are given in Table 2. The three-dimensional space 
can be reduced into two components only in such a 
way that one of the components is one dimensional, 
the second two-dimensional. 

Convention. With the anticipation of further fac- 
torization and distribution of reducible space groups 

Table 1. Reductions and decompositions of two- 
dimensional translation groups according to their 

Bravais classes 

p = T(a, b); c = T[(a+b)/2, (a-b)/2]; 
j~,, = T(a); ~b --'-~- T(b); /~/2 = T(a/2); ~b/2 = T(b/2). 

Oblique system 

Any basis vectors a, b 
P: T(a)~ T(b) 

Rectangular system 

All reductions orthogonai 
p: T(a, b)E) T(c) 
c: T(a) ~) T(b)[0 u (a + b)/2] 

~. /'b 

T~GI T°~2 
~a ~b 

into layer and rod classes, the following convention 
will be used throughout.  The plane of the layer group 
will always be taken as the plane V(a, b), the axis of 
rod group as V(c), where a, b, c are the vectors of the 
conventional unit cell. The symbol T(a, b) means the 
translation group generated by vectors a, b; the sym- 
bol T(c) means the translation group generated by a 
single vector e. For each Bravais type of the transla- 
tion subgroup T we give first its Z decomposition or 
Z reduction in the form of a direct or subdirect sum, 
respectively. In the fight-hand column of Table 2 the 
groups T° , ,  T°G2 are given, where index 1 corre- 
sponds to the projection 0-1 of the group T onto the 
plane V(a, b) and index 2 corresponds to the projec- 
tion 0"2 onto the axis V(c). The latter groups are given 
by lower-case letters p, c, which denote primitive or 
centered cases in the plane, and by ~, which denotes 
one-dimensional translation groups. Further symbols 
used are explained in the table. The different crys- 
tallographic systems are commented on below. 

Triclinic system. Each of the infinite number of 
possible choices of basis vectors a, b, c leads to a Z 
decomposition of the translation group T into a direct 
sum of T(a, b) and T(e). We do not consider the Q 
and R reductions, which may lead to Z reduction or 
R reductions and which do not imply Q and Z 
reduction. 

Monoclinic system. The system admits one 
orthogonal reduction and infinitely many inclined 
ones. There are two Bravais types -p r imi t ive  and 
centered. According to our convention, we have to 
choose the unique axis along c for the orthogonal 
reduction. Then we get a Z decomposition for the 
first case and Z reduction in the second case, in three 
different forms according to the three cell choices in 
IT87. In cases of inclined reductions, the plane must 
necessarily contain the unique axis. The cases when 
the unique axis is either a or b are given. The vector 
c is assumed to complete the basis of primitive cases 
and to complete the conventional basis in centered 
cases. The latter admit Z decomposition for the 
choice of centering vector in the plane V(a, b): C 
centering; in this case, the centering vector completes 
the basis in the plane V(a, b) and c completes it to 
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Table 2. Reductions and decompositions of three- 
dimensional translation groups according to their 

Bravais classes 

p = T(a, b), Pa/2 -- T(a/2,  b), Pb/2 = T(a, b/2), 
Pa/2,b/2 = T(a/2, b /2 ) , /3=  T[ (a+b) /2 ,  ( a - b ) / 2 ] ,  

c=  T(a)~)T(b) [0~  (a+b)/2] , /~t /s  = T[(2a+b) /3 ,  (a+2b) /3] ,  
/~ = T(e),/%/2 = T(c/2),/%/3 = T(e/3). 

Triclinic system 

Any basis vectors a, b, c T°ot 
P: T(a, b)~ T(¢) p 

Monoclinic systems 

Orthogonal reduction, unique axis e T°ol 
P: T(a, b)~ T(c) p 
A: T(a, b)~ T(c)[0u (b+c)/2] Pb/2 
B: T(a, b)0)T(c)[0 u (a+c)/2] P./2 
I: Y(a, b)~ T(c)[0 u (a+b+c)/2] p 
Inclined reduction, unique axis a TOo~ 
P: T(a, b)~ T(c) 6 
C: T[(a+b)/2, (a-b)/2]~) T(c) c 
B: T(a, b) ~T(c)[0 w (a + c)/2] Pa/2 
I: T(a, b)~ T(c)[0 w (a+b+c)/2] c 
Inclined reduction, unique axis b T°G~ 
P: T(a, b)~ T(c) p 
C: Y[(a+b)/2, (a -b) /2 ]~  T(c) c 
A: T(a, b)~ T(c)[0w (b+c)/2] Pb/2 
I: T(a, b)~ T(c)[0u (a+b+c)/2] c 

Orthorhombic system 

All reductions orthogonal Toot 
P: T(a, b)~ T(c) p 
C: T[(a+b)/2, (a -b) /2 ]~  T(c) c 
B: T(a, b) 0) T(c)[0 u (a + c)/2] P./2 
A; Y(a, b)~ T(c)[0 u (b+ c)/2] Pb/2 
F: T[(a+b)/2, (a-b)/2]0) T(c)[0w (a+c)/2] Pa/2,b/2 
I: Y(a, b)~ Y(c)[0 u (a+b+c)/2] c 

Tetragonal system 

All reductions orthogonal 
P: T(a, b)~T(c) 
I: T(a, b) ~ T(c)[0 ~ (a + b + c)/2] 

Hexagonal family 

All reductions orthogonal 

Single Z decomposition (P) only in hexagonal system, 
both Z decomposition (P) and Z reduction (R) in 
trigonal system 

P: T(a, b)~ T(c) 
R~ : (Obverse setting) 

T(a, b)~ T(c)[0w (2a+b+c)/3 
(a+ 2b+ 2c)/3] 

R2: (Reverse setting) 
Y(a, b)~) T(c)[0~ (a+2b+c)/3 

w (2a+b+2c)/3] 

'/•G2 
# 

~2 
# 

¢%/2 
~e/2 
d,c/2 
Too2 

# 

#~/2 
¢%/2 
Too~ 

# 

#e/2 
~/2 

the full basis. The other two choices of the unit cell 
lead to Z reductions. 

Orthorhombic system. All three possible orthogonal 
reductions lead to Z decomposition for the primitive 
Bravais type. For the base-centered Bravais type, we 
get Z decomposition if the setting corresponds to C 
centering and Z reduction if the setting corresponds 
to A or B centering (as a consequence of our conven- 
tion). Face- and volume-centered cases lead to Z 
reduction in all settings. 

Tetragonal system. The unique orthogonal reduc- 
tion leads to Z decomposition for the primitive 
Bravais type and to Z reduction for the /-centered 
Bravais type. 

Hexagonal family. The unique orthogonal reduc- 
tion leads to Z decomposition for the primitive 
Bravais type (in both hexagonal and trigonal systems) 
and to Z reduction for the rhombohedral Bravais 
type (trigonal system only). Both obverse and reverse 
settings are described. The groups T~ ,  TG2 coincide 
for the two cases, as do the groups T°~, T°2;  the 
subdirect sums do not. This is due to different coup- 
ling of the coset representatives in the resolution of 
T°l, ~G2 versus TG1, TG2. The factor group 
T°I/Tot  "" T°2/T~z is isomorphic to the cyclic group 
(?3 and the two different subdirect products are related 
to two automorphisms of C3 (Kopsk2~, 1988a). The 
resulting translation subgroups are distinct but each 
of them may be obtained from the other by a rotation 
on 7r/3 around the c axis. 

4. An algebraic contra-practical factorization 

Two methods of performing the factorization will be 
discussed briefly: an algebraic method and a method 
to determine factor groups directly from space-group 

TOo~ diagrams, which is more practical and undoubtedly 
¢, more appealing for crystallographers. In both cases, 
,~ we assume that we are dealing with three-dimensional 

/,c/2 space groups. The procedure for plane groups is 
/%/2 
~c/~ analogous. 
/%/2 

An algebraic factorization 

T°o, TOo2 According to our convention, we consider space 
P ~ groups G = {G, To, P, uc(g)} in settings in which the 

~c/2 subspaces V(a, b) and V(c) are G-invariant. In this 
paper, only Z decompositions are considered so that 

r°o, TOo~ Tc is a direct sum of translation subgroups in the 
two subspaces. As seen in Table 2, this means Tc = 
TGI~ TG2---- T(a, b)E) T(c) for the primitive type or 
Tc = T~10 To2 = T [ ( a + b ) / 2 ,  ( a - b ) / 2 ] 0 )  T(c) for 

P ~ the C setting of monoclinic and orthorhombic groups. 
According to the factorization procedure, the effect 

P,/3 ~o/3 of homomorphisms o.~, o'2 is to map the space group 
G = {(3, To, P, uc(g)} respectively onto a contracted 

#,/~ ~c/~ layer group n =o'1(G) = [G, Tel ,  P l , u ~ t ( g ) ]  and 
onto a contracted rod group R=~r2(G)= 
(G, T~2, P2, uc2(g)), where To,, uc~(g) and To2, 
uc2(g) are projections of To, uc(g) into subspaces 
V~(k, R) and V2(h,R). 

The contracted layer groups, acting on E(a,  b )x  
V(c), can be interpreted as Holser's 'groups of a 
two-sided plane',  while the ordinary layer groups in 
E(a,  b, c) are Holser's 'sectional layer groups'  (Hol- 
ser, 1958). The algebraic determination of factor 
groups as contracted layer and rod groups is very 
simple. Their translation subgroups are already deter- 
mined in Table 2. In the case of Z decompositions, 
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they coincide with groups Tel, T~2. The groups 
themselves are defined by components of the systems 
of nonprimitive translations in the two subspaces. 

Factorization with use of space-group diagrams 

In the preparation of the tables, the geometrical 
counterpart of the algebraic procedure was used. To 
perform the factorization in this way, we must under- 
stand its meaning and the meaning of components 
u~l(g) and u~2(g) of the system of nonprimitive 
translations in terms of graphical representations. We 
shall describe the procedure only for cases of 
orthogonal reductions and for space groups. 

Layer classes 

According to our convention, the factorization by 
the homomorphism Crab, which maps the space group 
onto the layer group, is always in the plane of the 
diagram, thus we have to neglect the components of 
nonprimitive translations along the c axis. Vol. A of 
International Tables for Crystallography (1987) con- 
tains diagrams that define all layer groups by projec- 
tions crab; previous volumes do not. The addition of 
nonprimitive translations along the c axis changes 
the ordinary rotation axes to screw axes or adds a 
glide translation c/2 to planes that are perpendicular 
to the plane of the diagram. Axes and planes parallel 
with the plane of the diagram, inversion centers or 
rotoinversions are accordingly shifted along the c axis 
above the plane of the diagram. Hence, if we neglect 
the components of nonprimitive translations along 
the c axis, we convert space-group diagrams into 
layer-group diagrams by replacing all screw axes per- 
pendicular to the diagram plane by ordinary ones, 
the dotted reflection planes (c/2) by full ones (0) and 
the dash-dotted planes [ ( a + b + c ) / 2 ,  ( a+c ) /2  or 
(b+c) /2]  by dashed ones [ (a+b) /2 ,  a/2 or b/2]. 
Furthermore, we omit all fractions that indicate the 
location of parallel axes and planes, inversion centers 
and rotoinversions above the plane of the diagram. 

Rod classes 

To obtain the rod classes, we have to neglect com- 
ponents of the system of nonprimitive translations in 
the plane V(a, b) of the diagram, which vanish under 
the action of homomorphism crc. The axis of the 
resulting rod group is perpendicular to the diagram 
in cases of orthogonal reductions and inclined other- 
wise (triclinic and monoclinic groups only). We may 
locate it at the upper left corner of the diagram and 
take it to be the origin. Ordinary and screw axes are 
related to this origin as well as planes that are perpen- 
dicular to the diagram; we have to replace the dashed 
plane symbols by solid lines and the dash-dotted by 
dotted lines while full and dotted lines remain 
unchanged, except for the shift towards the origin. 

Glide planes and twofold screw axes that are parallel 
to the diagram should be replaced by ordinary ones; 
the latter axes, inversion and rotoinversion centers 
should be shifted to pass through or be located at the 
origin and their heights above the diagram plane must 
be retained. 

5. Hermann-Mauguin symbols for 
layer and rod groups 

Whichever of the two methods we use to determine 
layer and rod groups as factor groups of reducible 
space groups, we face the same problem. Although 
the layer, rod and frieze groups have been known 
since 1929 - a rich year for groups that are now called 
subperiodic - neither generally accepted nor suitable 
standards and symbols have been available up to now. 
There is a plethora of notations starting from original 
papers (Alexander, 1929; Alexander & Hermann, 
1928, 1929; Heesch, 1929; Hermann 1928, 1929; 
Weber, 1929) to tables of layer groups by Wood (1964) 
in the format of International Tables for Crystallogra- 
phy (1987), but none of them suits our purpose as 
well as the system now introduced, which is very close 
to the nomenclature of Bohm & Dornberger-Schiff 
(1967) and to recent tables by Grell, Krause & Grell 
(1989). 

The principle of our notation is based on the 
existence of symmorphic representatives of layer and 
rod classes. To each contracted layer group 0_-- 
[(3, T(a, b), Pi, u~l(g)] we assign the symmorphic 
representative GL = {G, T(a, b, c), P, ucl(g)} of the 
layer class. We use exactly the same Hermann- 
Mauguin symbol for the layer group [1_ as for the 
group GL, except that the letter P is replaced by 
lower-case p or C is replaced by c. Analogously, to 
each contracted rod group R = (G, T(e), P2, UG2(g)) 
there corresponds the symmorphic representative of 
the rod class, the space group {~R = {G, T(a, b, c), P, 
uc2(g)}, and we use its Hermann-Mauguin symbol 
for the rod group R, replacing P by #. 

Notice that in this way we shall obtain the symbols 
for all layer- and rod-group types including different 
settings and these will be correlated in the most 
natural way with symbols of reducible space-group 
types. A complete scheme calls, however, for correla- 
tion of origin choices, which needs separate consider- 
ation. 

The origin of the long-known relationship between 
diagrams of layer groups and of certain space groups 
(Cochran, 1952), mentioned in the Introduction, now 
becomes clear. The diagram of every layer group [L 
can be interpreted as a diagram of the symmorphic 
representative GL of the layer class [L of space groups. 
An analogous and probably previously unnoted 
relationship exists between rod groups and certain 
space groups. The diagram of the symmorphic rep- 
resentative G;R of a rod class [~ contains some point 
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such that its surrounding, containing symmetry ele- 
ments that are either located at this point or pass 
through it, can be considered as a diagram of the 
corresponding rod group R. 

The two rectangular schemes for space groups of Oblique system 
arithmetic classes 422P and 4romP below illustrate pl 

the scheme and also the intersection theorem (paper p2 
B, theorem 2). The columns are headed by rod groups Rectangular system 
that identify the rod class to which the space groups IP lrnl ~lml 

of the column belong and rows are headed by symbols [pllmr pig I ~#llml m 1 
of layer groups that identify the layer classes to which / pl lg  ~llg 
the space groups of the row belong, p2mrn ~2mm 

f p2mg ~2mg 
[p2gm d2mm 

p2gg ¢~2mg D 4 ¢~422 ~4t22 ~ 4 2 2 2  ¢~4322 

p422 P422 P4122 P4222 P4322 
p4212 P4212 P4 t212  P422t2 P43212 

C4o #4turn #42cm #4cc #42mc 

p4mm P4mm P42cm P4cc P42mc 
p4bm P4bm P42nm P4nc P42bc 

The space groups in the first columns are the rep- 
resentative space groups of layer classes; the space 
groups in the first rows are the representatives of rod 
classes. Accordingly, they define the symbols of layer 
groups in the heading column and row. Each space 
group of the arithmetic class lies on the intersection 
of a layer and a rod class. The Hermann-Mauguin  
symbols are so ingeniously devised that we can trace 
in these schemes the rules by which the symbols of 
groups on intersections combine from symbols of 
symmorphic representatives. If we assign appropriate 
origins to layer, rod and space groups, then the shifts 
of or!gins of layer and rod groups will be reflected 
in such schemes as components of the shift of the 
space group on the intersection. Unfortunately, the 
origin choices of space-group diagrams in Inter- 
national Tables for Crystallography (1987) are not 
always compatible with this scheme. 

6. Frieze classes of reducible plane groups with respect 
to Z decompositions 

Plane and frieze groups act on Euclidean plane 
E(a,  b). The contracted frieze groups act on a two- 
sided line in a plane. Factor groups of reducible plane 
groups by partial-translation subgroups T(a) or T(b) 
then act on V(a) x E (b) or E (a) x V(b), respectively. 
As in the case of space groups we adopt the conven- 
tion of always expressing the factorization with 
respect to the line E(a)  x V(b). The symbols of frieze 
groups are then identical with symbols of plane 
groups that are their symmorphic representatives, 
with p replaced by ~. The three places in the symbols 
of frieze groups correspond subsequently to the direc- 
tion perpendicular to the plane, to the direction of 
its translation subgroup and to the complementary 
direction in the plane. Accordingly, we get seven 

Table 3. Factorization of  reducible plane groups with 
respect to Z decompositions 

Plane group Its projections onto V(a), V(b) 

Ora Orb 

~2 ~2 

$11m 
¢~lml 
~llg 
dlml 
It 2 rn m 
d2mm 
d2rng 
#2mg 

Table 4. Distribution of reducible plane groups into 
frieze classes with respect to Z decompositions 

Frieze class Plane groups 

~1 pl 
/~2 p2 
¢~llm pllm(ab),  plgl(ab) 
$1ml plrnl(ba) 
p l lg  pllg(ba) 
#2ram p2mm(ab, ba), p2gm(ba) 
~ 2mg p2mg( ab ), p2gg( ab, ba ) 

symbols for frieze-group types: ~1, ~2, ¢~1 ml ,  ¢~11 m, 
~ l l g ,  ~2mm and ¢~2mg. Table 3 shows frieze groups 
as homomorphic images of plane groups with Z- 
decomposable translation subgroups. Pairs of plane 
groups connected by braces correspond to two set- 
tings, of which (ab) is the first, (ba) the second. The 
distribution of plane groups into frieze classes with 
respect to Z decompositions is given in Table 4. 

7. Layer and rod classes of reducible space groups with 
respect to Z decompositions 

In this section, we assign to each layer and rod class 
those reducible space groups that belong to it with 
respect to a particular Z decomposition. The general 
format of all tables is the same. In the first row we 
list the geometric classes by their Sch6nflies symbols 
and, next to this, the symbol of the arithmetic class. 
Apart from C settings of monoclinic and orthorhom- 
bic systems, all Bravais types are primitive. In the 
two columns we list the space groups of the layer and 
rod classes. The latter are denoted by Hermann-  
Mauguin symbols according to rules set in §5: for 
space groups, abbreviated Sch6nflies symbols are 
used which facilitate rapid searches in International 
Tables for Crystallography (1987). Only in the case 
of monoclinic groups are Hermann-Mauguin  sym- 
bols also used to distinguish the setting and the cell 
choice. The first space group listed in each layer and 
rod class is its symmorphic representative and is 
printed in bold. I fa  rod class splits into two arithmetic 
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rod classes then each has its own symmorphic rep- 
resentative. Underlined symmorphic representatives 
correspond to cases when the point group acts trivially 
on the subspace containing the translation subgroup 
by which we factorize. In these cases, the semidirect- 
product form of the symmorphic representative turns 
into a direct product of the layer or rod group and 
of the translation subgroup of missing translations. 

The layer groups are connected with plane 
groups as well as with space groups. The systems are 
named as a combination of the two characteristics: 
triclinic-oblique, monoclinic-oblique, monoclinic- 
rectangular, orthorhombic-rectangular,  tetragonal- 
square, tr igonal-hexagonal and hexagonal-hexa- 
gonal. In some cases, one part of the name implies 
the other. Monoclinic-inclined and monoclinic- 
orthogonal rod groups should be distinguished. 
Triclinic rod groups are automatically inclined, 
all others are orthogonal. 

7.1. Triclinic and monoclinic systems 

These are the only two systems in which inclined 
reductions occur. Z decompositions of triclinic 
groups correspond to any choice of basis vectors a, 
b, c in the role of conventional vectors. The mono- 
clinic system presents a special problem. From the 
viewpoint of reduction and factorization, the second 
edition of International Tables for Crystallography 
(1987) provides all necessary diagrams with the 
exception of a few in the monoclinic system. For Z 
decompositions, these are the diagrams that would 
correspond to the Hermann-Mauguin  symbols P1 n 1 
or P n l l ,  P12/nl or P2/nl l  and P121/nll or 
P21/nll. Both orthogonal and inclined reductions 
occur. The orthogonal reduction leads to an oblique 
system of layer groups and to an orthogonal system 
of rod groups. It is unique and, according to our 
convention, corresponds to the choice of the c axis 
as the unique monoclinic axis. This choice defines 
uniquely the conventional vector c but there are still 
infinitely many choices of conventional vectors a and 
b; space groups Pl12,  Pl lm and P112/m have the 
same symbols whatever the choice of a and b. With 
every choice of a, b there are associated two other 
cell choices with respect to which the remaining three 
groups of the primitive Bravais type acquire three 
alternative symbols: (P11a, P11n, P11b), (P112/a, 
P112/n,  P112/b)  and (P1121/a, P1121/n, P1121/b), 
depending on the direction of the glide translation 
with respect to the conventional vectors a and b. 
Corresponding symbols p l l a ,  p l l n ,  p l l b  and 
p 112/a, p 112/n, p 112/b denote two-layer group types 
with reference to three possible unit-cell choices in 
the plane (a, b). 

Inclined reductions lead to rectangular systems for 
layer groups and to inclined systems for rod groups. 
The corresponding diagrams of monoclinic space 

groups (on the right and below the oblique diagram) 
in IT87 are interpreted as orthogonal projections. 
The diagrams themselves do not depend on the choice 
of unique axis; the difference is in the labeling of 
axes. We adopt,  in agreement with our convention, 
the position that the lower left and upper right 
diagrams correspond to the choice of c axis out of 
the plane of the diagram, while the edges of the 
rectangles are interpreted as the conventional vectors 
a and b. In addition, we consider the diagrams as 
skew projections of the groups in the direction of the 
c axis. The rules for geometrical factorization are the 
same as for orthogonal projections. The dotted line 
represents the glide plane and the nonprimitive trans- 
lation c/2 is regarded as inclined to the diagram of 
the plane. Analogously, the fractions, which denote 
the heights above the diagram, now denote the shift 
in the direction inclined to the plane. The rod groups 
accordingly have c axes inclined to the plane of the 
diagram. The results of the factorization and 
classification oftriclinic and monoclinic space groups 
are collected in Table 5. 

7.2. Orthorhombic system 

Each orthorhombic group can be and in IT87 
actually is presented in six settings, which correspond 
to three possible orthogonal reductions. We interpret 
the diagrams according to our convention in such a 
way that the c axis is always perpendicular to the 
plane of the diagram; the edges of rectangles are 
assumed to correspond to vectors a and b, where a 
corresponds to the vertical, b to the horizontal edge. 
If we rotate the page by 90 ° , the vectors a and b 
interchange. Thus, instead of considering three reduc- 
tions of a given group, we consider one reduction of 
the six possible settings. Accordingly, the layer groups 
appear generally in two possible settings that some- 
times lead to the same symbol. In Table 6, for each 
layer and rod group, the Sch/Snflies symbols of all 
space groups for which they are the factor group are 
given, with the settings in which factorization by T(c) 
and T(a, b) will provide these groups given in paren- 
theses. 

7.3. Tetragonal system 

Since the groups of this system admit just one 
orthogonal reduction, there are no specific problems 
connected with their factorization. Note, however, 
the already-mentioned fact that in Table 7 there are 
pairs of rod groups where the two rod groups of the 
same type define different space-group types as a 
result of their different orientation with respect to the 
translation subgroup T(a, b). The rod groups of the 
same type are linked by braces in Table 7, which 
presents layer and rod classes of tetragonal space 
groups. 
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Table 5. Layer and rod classes of reducible space groups with respect to Z decompositions of their translation 
subgroups: triclinic and monoclinic systems 

Geometric- 
arithmetic class Layer classes 

Triclinic system Oblique system 
CI-IP pl Ctt 

C,-iP pT C[ 

Monoclinic system Oblique system 

Orthogonal reduction 

C2-112P p112 C~. C~ 

Cs-llmP pllm Ct~ 
p l l a ]  

p l ln~ C~ 

pl lbJ  
C2h-ll2/mP pll2/m C~a, C~h 

pl12/a } 
p112/n C~,. C~h 
pll2/b 

Monoclinic system Rectangular system 

Inclined reduction, unique axis b 

C2-121P p121 C~ (P121) 
pl2tl C 2 (P12~I) 

-121C c121 C 3 (C121) 

C~-lmlP plml C1 (Plml), C] (Plcl) 
plal C~ (Plal,  Plnl)  

- lm lC  clml Ca (Clml). C4s (Clcl) 

C2h-12/mlP pl2/ml C~h (Pl2/ml). C4h (P12/cl) 
pl2t/ml CZ~h (P121/ml). C~h (Pl2t/cl) 
pl2/ al C4h ( P12/al. P12/ nl ) 
pl2J a l C~h ( Pl21/al , Pl21/ n l ) 

-12~talc cl2/ml C3h (Cl2/ml). C6h (C12/cl) 
Inclined reduction, unique axis a 

C2-211P p211 C~ (P211) 
p2,11 Cz2 (P2,11) 

-211C c211 C 3 (C211) 

C~-m11P pmll C] (Pmll), C 2 (ecl 1) 
pbll C~ (Pbl 1, Pnll) 

-ral 1C cmll C a (Cmll). Cas (Ccl 1) 

C2h-2/mllP p2/mll C~h (P2/mll). C~h (P2/cll) 
p21/mll C2h (P21/mll) , C52h (P2x/cll) 
p2/ bl l C4a (P2/bll. P2/ nl l ) 
p2J bll C~h (P21/bll. P2J nl l ) 

-2/mllc  c2/mll C3h (C2/mll). C~h (C2/c11) 

#1 C~ 

#~ c~ 

#112 

~l12t 
# l lm 

~ll21/m 

#121 

Blml 

~lcl 

~12/ml 

/tl2/cl 

/t211 

/troll 

ttcll 

•2/mll 

#2/cll 

c '  
c ~, 
c:, c2s 

Rod classes 

Inclined 

Orthogonal 

2 5 Czh, C2h 

Inclined 

C~t (p121), C~ (P12,1); 
C~(C!21) 

C~ (Plml), C2~ (Plal);  
ca(c lml )  
C~ 2 (Plcl, Plnl); 

C~ ( CIcl) 

C~h (Pl2/ml), C22h (Pl2~/rnl), 
C42h ( Pl2/ a l ), C~h ( P12,1a l ); 
Cash ( Cl2/ml) 
C~h (PI2/cl, Pl2/nl), C52,, (P12,/cl, Pl2,/nl) 
C~2 h (C12/cl) 

c; (P211), c~ (p2,11); 
c~(c211) 

C~ (Pmll), C2~ (Pall); 
C3 ( CmI1) 
C2 ( PclI, /:'ni l ); 

c~ ~ctu) 

C~h (P2/mli), C~,, (P21/mll) , 
C~h (P2/bll), C~t, (P2,/bll); 
C32h ( C2/ m l l ) 
C~2h (P2/cil, P2/nll), C~h (P2Jcll ,  P2~/nll); 
C% (C2/c11) 
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Table 6. Layer and rod classes of reducible space groups with respect to Z decompositions of their translation 
subgroups" orthorhombic system 

Geometric-  
arithmetic class 
Orthorhombic 

system 

D2-222P 

-222C 

C2v-mm2P 

-mm2C 

C2v-m2mP 
-2mmP 

-m2mc 
-2mmC 

D2h-mmmP 

-mmmC 

p222 

{ p2122 
p2212 
p21212 
c222 

pmm2 

pma2 

pbm2 

pba2 

cmm2 

pm2m 
p2mm 
pm2tb 
p2t ma 
pb2 ~ m 
p2~am 
pb2b 
p2aa 
pm2a 
p2mb 

{ pb2ta 
p2tab 
ppb 2 n 

2an 

{ pm21n 
p21 mn 
cm2m 
c2mm 
cm2a 
c2mb 

pmmm 
pbmb 
pmaa 
pban 
pmma 
pmmb 
pmam 
pbmm 
pman 
pbmn 
pbab 
pbaa 

pbam 
pmab 
pbma 
pmmn 
cmmm 

cmma = cmmb 

Layer classes Rod classes 

Rectangular system 

D~(all), D2( abc, bac) ~222 
D~( cab, cba ), D32( acb, bca ) 
D~( acb, bca ), D32( cab, cba ) 1~2221 
Daz(abc, bac), D~(all) 
D~( abc, bac), D52( abc, bac) 

C~,,( abc, bac), CL,( abc, bac), C3o( abc, bac) ~mm2 

C4"( abc)' C~v( abc)' C6v( bac)' C72v( abc) i ~mc2, 

C~2"( bac)" C52v( bac)' C62v( abc)' C72"( bac) I bcm2t 

Ca2,,(abc, bac), C9,,(abc, bac), to C2,,( abc , bac) #cc2 

11 C2,,(abc , bac), C2,,(abc, bac) C2v( abc , bac), 12 13 

Clv( acb, bca), C4v( bca) ~ ~m2m 
C~,,( cab, cba), C4v( cba) 
C~,,(acb), C~v(bca) 
C~o( cab ), C~o( cba ) ~m2m 
C~v( bca ), C72v( bca ) 
C~v( cba), C72v( cba) 
C~v(acb, bca), C~,,(acb) f ~c2m 
Ca2v( cab, cba ), C6o( cab ) t C~2~,( acb ), Ca2o( acb, bca ) 
C~2,,( cab ), C82o( cab, cba ) I. # 2cm 
C~v( acb ), C92v( acb ) 
CS2,,( cab ), Cg,~( cab ) 

6 10 C2,,(bca), C2v(acb , bca) 
C~2v(cba), !o C 2v( cab , cba ) 
C~,,(acb), C~o(bca) 
C72v( cab ), C92,,( cba) 

14 16 C2,,( bca ), C 2o( bca ) 
14  16 C2,,( cba), C2o( cba) 

C~S,,( ( bca ), C~7 ( bca ) 
15 17 C2~(cba), C2o(cba) 

D~(all), D~2h( abc, bac), D~h( cba, bca) ~mmm 
D~h(acb, cba), D42h(Cab, cba), D72h(bac), D~2h(bca) 
Dab(Cab, bca), D~2~,(acb, cba), D7h(abc), DS2h(Cba) 
Dlh(abc, bac), D2(all), D%(acb, cab) 
D~h(abc), D~2h(abc), D9h-abc, bca), D~2~h(Cab) $ccm 
D~h(bac), D~h(bac), D9h(cab, cba), D~2~h(acb) 
D~h( acb ), D72h( cba), D~th( bac), D~23 ( acb, bca) 
DSh ( cab ), D7h ( bCa ), D[ ~h ( abc ), D~23 ( cab, cba ) 
DTzh(acb), D62h(Cba), D~22(cab, cba), D~23(bac) 
D7h( cab ), D62h( bCa ), Dt2 ( acb, bca ), D~23h( abc ) 
D~h( acb ), D62h( bac ), D~2° ( acb, bca ), D~4h( cba ) 
Dazh( cab ), D62h ( aca ), D~2° ( cab, cba ), Dt2~ ( bca ) 

D~t,( abc, bac), D[2h( abc, bac), D~6h( aCb, cab) 
D~(cba), D2h(aCb),'4 D~2~h(bac, acb, cba), D~26(bac) 
DU, b " Dt2~,( cab ), D~25h( abc, cab, bca ), D~26h( abc) 2at ca}, 
D~(abc, bac), D~2°(abc, bac), D~2~(cba, bca) 
D~9 ( abc, bac), D~27 ( abc, bac), DE° ( abc, bac) 

21 D2h(abc, bac), D~2~h(abc, bac), O222 (abc, bac) 

/~cmm 

O~hogonal  

Dt2(all), D2( acb, cab, cba, bca), D32( acb, cab); 
D~( abc, bac) 
D~(abc, bac), D3(acb, cab, cba, bca), D~(all); 
D~( abc, bac ) 

C~,,( abc, bac), C42,,( abc, bac), C82o( abc, bac); 
I I  Cz~( abc, bac) 

C~,,( abc), C52v( bac), C72v( abc), C92v( bac); 
12 C2v( abc) 

C~,,( bac), C52v( abc), C7,,( bac), C92,,( abc); 
12 C 2~,( bac ) 

Ca2,,( abc, bat), C62o( abc, bac), C~° ( abc, bat); 
13 Cz~( abc, bac) 

C~z,,( acb, bca ), C2,,( acb, bca ), C3o( acb, bca ), 
C42,,( acb ), C52,,( acb ), C62,,( bca ), C72,,( acb ); 

'" C~(bca) C:,o( bca ), 
C~,,( cab, cba ), C22,,( cab, cba ), C32,,( cab, cba ), 
C4o(cab), C52,,(cab), C62o(cba), C7v(cab); 
C~4(cba), C~So(cba) 
C~2,,( bca ), C~v( bca ), C62v( acb ), C7v( bca ), 
CS2,~(acb, bca), cgo(acb, bca), Io C2~(acb , boa); 

16 17 C2v(bca), C2v(bca) 
C42,,( cba ), C52,,( cba ), C62o( cab ), C72,,( cba ), 
C8 (cab, cba), 9 cba), lo C2v(cab , C2v(cab, cba); 

16 17 C2v(cba), C2v(cba) 

D~h(all), D32h(aCb, cab, cba, bca), D42h(abc, bac), 
D5h(abc, bac, acb, cab), D7h(acb, cab), 
DS2h ( aCb, cab ),D92h ( abc, bac ), O~ ~h ( Cba, bca ), 
D ~3 ( abc, bac); D~(  abc, bac), D22~( abc, bac) 
D32h( abc, bac ), /~2h ( all ), D42h ( aCb, cab, cba, bca ), 
D6h(abc, bac, cba, bca), D7h(cba, bca), 
D~h(abc, bac), D~° (abc, bac), D~2h(abc, bac), 
D~(  abc, cab); D22° ( abc, bac), D222 ( abc, bac) 
O~  ( b~.. ). D~, ( ¢ab ). D~, ( ab~ ). ~ ,  ( b~a ). 
D92h ( cab, cba ), D12° ( acb, bca ), D~2~ ( abc, cab), 

Dl4 . . V122h(Cab, cba), Vt23h(acb, bca), 2htaoc, bca), 
D125h( abc, cab, bca ), D126 ( bac, cab, bca ); 
o'~(,,b~), D;~(,,bc), 
DS2h(cba), D62h(acb), D72h(bac), DS2h(cba), 
Dgh(aCb, bca), D12%(cab, cba), D2h(bac , 1 1  acb), 

D TM "" cba), o'~(,,cb, bco), D;~(c~b, cba), 2h~o~c, 
Dt25h(bac, acb, cba), 16 D2h(abc, acb, cba); 
Dt27h ( bac ), Dt2S ( bac ) 
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Table 7. Layer and rod classes of reducible space groups with respect to Z decompositions of their translation 
subgroups" tetragonal system 

Geometric- 
arithmetic class Layer classes Rod classes 

Tetragonal 
system Square system 

C4-4P p4 C ~ ,  C24, C 4  ),3 C44 

s~-~P 
Cah-4/ mP 

D4-422P 

pZ~ s] 
p4/ m C~h, C~,, 

p4/ n Ca4h, C~,, 

p422 DI, D 3, D45, D 7 
p42t2 D~. 0 4, 0 6, 084 

p4mm C~o , C3o. C54o. C74o 
p4bm cZ , 4 C6o. 8 C4o, C~o 

pZl2m Old , O~2d 
pit2~ m Da~d. D~d 
p~m2 o~., o ~  
p4b2 7 Ozd , D8d 

p4/mmm D~.. O24h, 9 10 O4h, O4h 
p4/ nbm Oa4h. O44h, O~4~,, 01, 2 
p4/ mbm O~.. O~,,. O~ 3 , Ota,~ 

7 p4/ nmm Dab, D8h, 15 16 O4h, O4h 

C4o-4mmP 

D2a-42mP 

-4m2P 

D4h-4/mmmP 

7.4. Hexagonal family. 

This family splits into trigonal and hexagonal sys- 
tems and the layer and rod classes are accordingly 
listed in Tables 8 and 9. Again, there are no specific 
problems connected with factorization. It is, perhaps, 
worth observing that each arithmetic rod class in this 
family consists of  just one space-group type. This is 
a direct consequence of the fact that the plane 
hexagonal Bravais type relates exactly one layer 
group to each point group. 

Orthogonal 
~4 C~ 
d41 C4 z 
~42 C4 a 
~43 C 4 

~ s~ 
~4/m C~h , C3h 

~42/ m C~h, Ca,, 

~422 D~, D42 
/~4122 D43, D 4 
/'4222 D~, D46 
~4322 D~, D 8 

~4mm C~v , C~o 

{ ~42cm C~v, C~o 
~42mc C7~, C84~ 

~4cc CS4t~, C6~, 

f ~a2m D~d, O3d 

I.#Zrn2 O~d, O~d 
I. ~7~c2 D~d. D~d 

I /,4/ mmm O 4h , D3n, 
~4/ mcc D~h, 4 D4 h, 

9 II #42/ mmc D4h, D4h, 
i 0  12 #42/mcm D4h , D4h , 

8. Enantiomorphism 

The origin of enantiomorphism in three dimensions 
is characterized in §2 of paper B as the screw enan- 
tiomorphism. 10 of the 11 enantiomorphic pairs of 
space groups are reducible and their enantiomorph- 
ism is a consequence of the enantiomorph- 
ism of corresponding rod groups. Theoretically, 
enantiomorphism of a subperiodic group results 
in enantiomorphism of all space groups of the 
enantiomorphic class in question. We list all 
enantiomorphic pairs of  space groups and of corres- 
ponding rod classes in Table 10. There are only two 
cases in which the enantiomorphic rod classes contain 
more than one (in particular two) enantiomorphic 
space-group types. 

DL, D~,, 
DL, DL 
D'L, D',, ~, 
DL; , O'4,6, 

Table 8. Layer and rod classes of reducible space 
groups with respect to Z decompositions of their 
translation subgroups: hexagonal family/trigonal 

system 

Layer classes Rod classes 

Geometric- 
arithmetic 

class 

Trigonal 
system Hexagonal system 

C3-3P p3 C], C g, C 3 
Orthogonal 

1,3 C~ 
~31 C~ 
~32 C~ 

c~, ~ c~, 

D~.D~,D~ #312 O~; #321 D~ 

D~,D~.D~ #3,1? D~; #3,21 O~ 
"5 #3~12 D3; #322) D~ 
"1 C~,C3~ #3ml C,~,; o31rn C32~ = - -  ~ 

2 4 4 Car, C3o #3cl C3~; /,31c Car 
I "1 Dad, D~a; p312/m D3d #32/ml 

O3d. O~d #_~ i 2/c Din ; #32/cl O~d 

C3~-3P p3 

D3-312P p312 

-321P p321 

C~,.-3mlP p3ml 

-3IMP p31m 

D3d-312/mP p312/m 

-32/mlP p32/ml 

9. Concluding remarks 

The factorization of reducible space (plane) groups 
by partial-translation subgroups refines our knowl- 
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Table 9. Layer and rod classes o f  reducible space groups with respect to Z decompositions o f  their translation 
subgroups" hexagonal family /hexagonal  system 

Geometric- 
arithmetic class Layer classes Rod classes 

Hexagonal sys tem Hexagonal system Orthogonal 
C6-6P p6 C~, C 2, C~, C~, C~, C~ /*6 C~ /*62 

/.61 C6 z /*65 
/*63 C66 /*64 

C3h-6P p6 C~h /.6 C~ 

C6h-6/mP p6/m C~n. C2h 1,6/m C~6h /*63/m 

D6-622P p622 D61. D 2, D6 ,3 D6 ,4 D6.D 6 s  6 /*622 D6 I /*6322 
/.6122 D6 z /.6s22 
/*6322 D66 /.6a22 

D3t, ; D3h-6m2P p6m2 D~h, D~h /.6m2 i /.62m 

4 D3h; /.62c -62mP p62m D~n, D3h /*gC2 i 
I 4 C6o-6mmP p6mm C6~. C2o. C36o. C6o ~*6ram C~o /.6cc 

/.63cm C~o ; /.63mc 

D6h-6/ mmmP p6/ mmm D~h. D26h. Dab. D4h /*6/ mmm Di6h /*6/ mcc 
/*6/mcm Dan ; /*6/mmc 

c~ 
c~ 
c~ 

c~ 
o~ 
o63 
o~ 
o3, 

D~ 

C~o 
C~ 

O~ 

edge of their structure, perfects their systemization 
and, at least in our opinion, provides the most logical 
nomenclature for frieze, layer and rod groups. Further 
important consequences stem from representation 
theory. The homomorphisms o'~, 0.2 with kernels 
ker0.1 = TG2, ker 0"2 = TG~ map the group G onto 
layer group IL =0"~(G) and rod group R =0"2(G) in 
the same way that the homomorphism o- with kernel 
ker o-= TG maps it onto the point group G--tr(G).  
The impact of this last relation is well known: firstly, 
the lattice of equitranslational subgroups of the group 
G is isomorphic to the lattice of subgroups of the 
point group G and, secondly, all representations of 
the group G, corresponding to the wave vector k = 0, 
are engendered by representations of the point group 
G. The usefulness of these relationships is well known 
to phase-transition theorists. Ascher (1968) used the 
isomorphism of lattices to tabulate lattices of 
equitranslational subgroups of space groups. The use 
of analogous relations stemming from partial factoriz- 
ation in a joint systemization of representations and 
lattices of space and subperiodic groups is discussed 
by Kopsk2~ (1988b). 

Finally, it is worth mentioning the existence of a 
problem that is important in the theory of interfaces 
in crystals such as domain walls (see, for example, 
Janovec, Schranz, Warhanek & Zikmund, 1989) or 
twin and grain boundaries. We refer to it as to the 
'scanning of layer groups' (Kopsk2~ & Litvin, 1988; 
Janovec, Kopsk2~ & Litvin, 1988; Kopsk~,, 1990) and 
formulate it as follows: given a space group and a 
direction of a plane V(a', b', c'), find the symmetries 
of plane cuts of the crystal as the plane is shifted in 
space. As will be shown in other publications 
(Kopsk~,, 1992), the classification of space groups 

Table 10. Enantiomorphic pairs o f  space groups and 
corresponding enantiomorphic pairs o f  their rod classes 

Space Space 
No.* group Rod class group 
IT 76 C](P4~) /*41 /*43 C4( P43) 
IT91 D](P4122) ] ~ D7(P4322) 
IT92 D4(p4t2,2)J /*4133 /*4322 [D](P432,2) 

No.* 
IT 78 
IT 95 
IT 96 

IT 144 C32(P31) B31 1,32 C3(P32) IT 145 
ITI51 D](P3~ 12)~ / .312 /*322 J "D~(P3212) IT153 
IT152 D~(PalEI)J [ D](Pa221) IT154 
IT 169 C62(p61) /*61 /*65 C3(p65) IT 170 
IT 171 C~(P62) /*62 /*64 C~(P64) IT 172 
IT 178 D62(P6122) /.6122 /*6522 D~(P6522) IT 179 
IT 180 D~(P6222) /*6222 /*6422 D56(P6422) IT 181 

* Number in International Tables for Crystallography (1983). 

into layer and rod classes is the first step to the 
solution of this problem. 
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Abstract 

Reducible plane groups of rectangular systems with 
c lattices are classified into frieze classes and reduc- 
ible space groups with centered lattices are classified 
into layer and rod classes with respect to those Q 
reductions that lead to Z reduction but not to Z 
decomposition. Tables are given for plane groups, 
presenting their homomorphic projections onto frieze 
groups, and for space groups, presenting their homo- 
morphic projections onto layer and rod groups. These 
projections define the classes to which the plane and 
space groups belong. In both cases, the characteristic 
shift vectors are listed that change the plane or space 
group without changing the homomorphic projec- 
tions onto frieze, layer and rod groups. 

I. Introduction 
In the established terminology of integral representa- 
tions of finite groups [Curtis & Reiner (1966); in a 
crystallographic context: Brown, Billow, Neubiiser, 
Wondratschek & Zassenhaus (1978)], Z decom- 

* On leave of absence from Institute of Physics, Czechoslovak 
Academy of Sciences, Na Slovance 2, PO Box 24, 18040 Praha 8, 
Czechoslovakia. 

0108-7673/93/020280-08506.00 

position is a special case of Z reduction. In paper I 
of this series (Kopsk~, 1993), the frieze classes of 
reducible plane groups and layer and rod classes 
of reducible space groups with respect to those Z 
reductions that are Z decompositions were tabulated. 
To complete the distribution of reducible space 
groups into layer and rod classes (plane groups into 
pairs of frieze classes), we consider now the cases of 
those Z reductions that are not Z decompositions. 
For simplicity, we shall use the term Z reduction to 
mean only those that are not Z decompositions if we 
do not state otherwise. 

The classification of reducible space groups with 
respect to Z reductions has a few specific features 
that distinguish it from the classification with respect 
to Z decompositions. This is one of the reasons for 
considering them separately. 

Classification into layer and rod classes (or into 
pairs of frieze classes) is equivalent to factorization 
by partial translation subgroups or to determination 
of corresponding homomorphic projections. The 
latter are more suitable for Z reductions. To avoid 
misunderstanding, let us observe that the projections 
we talk about are not identical with the special projec- 
tions listed in International Tables for Crystallography 
(1987). 
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